3,959 research outputs found

    Representing Structural Information of Helical Charge Distributions in Cylindrical Coordinates

    Full text link
    Structural information in the local electric field produced by helical charge distributions, such as dissolved DNA, is revealed in a straightforward manner employing cylindrical coordinates. Comparison of structure factors derived in terms of cylindrical and helical coordinates is made. A simple coordinate transformation serves to relate the Green function in cylindrical and helical coordinates. We also compare the electric field on the central axis of a single helix as calculated in both systems.Comment: 11 pages in plain LaTex, no figures. Accepted for publication in PRE March, 199

    Quantum mechanical lorentzian wormholes in cosmological backgrounds

    Get PDF
    We present a minisuperspace analysis of a class of Lorentzian wormholes that evolves quantum mechanically in a background Friedman Robertson Walker spacetime. The quantum mechanical wavefunction for these wormholes is obtained by solving the Wheeler-DeWitt equation for Einstein gravity on this minisuperspace. The time-dependent expectation value of the wormhole throat radius is calculated to lowest order in an adiabatic expansion of the Wheeler-DeWitt hamiltonian. For a radiation dominated expansion, the radius is shown to relax asymptotically to obtain a value of order the Planck length while for a deSitter background, the radius is stationary but always larger than the Planck length. These two cases are of particular relevance when considering wormholes in the early universe

    Boulware state and semiclassical thermodynamics of black holes in a cavity

    Full text link
    A black hole, surrounded by a reflecting shell, acts as an effective star-like object with respect to the outer region that leads to vacuum polarization outside, where the quantum fields are in the Boulware state. We find the quantum correction to the Hawking temperature, taking into account this circumstance. It is proportional to the integral of the trace of the total quantum stress-energy tensor over the whole space from the horizon to infinity. For the shell, sufficiently close to the horizon, the leading term comes from the boundary contribution of the Boulware state.Comment: 7 pages. To appear in Phys. Rev.

    Dynamic wormholes

    Full text link
    A new framework is proposed for general dynamic wormholes, unifying them with black holes. Both are generically defined locally by outer trapping horizons, temporal for wormholes and spatial or null for black and white holes. Thus wormhole horizons are two-way traversible, while black-hole and white-hole horizons are only one-way traversible. It follows from the Einstein equation that the null energy condition is violated everywhere on a generic wormhole horizon. It is suggested that quantum inequalities constraining negative energy break down at such horizons. Wormhole dynamics can be developed as for black-hole dynamics, including a reversed second law and a first law involving a definition of wormhole surface gravity. Since the causal nature of a horizon can change, being spatial under positive energy and temporal under sufficient negative energy, black holes and wormholes are interconvertible. In particular, if a wormhole's negative-energy source fails, it may collapse into a black hole. Conversely, irradiating a black-hole horizon with negative energy could convert it into a wormhole horizon. This also suggests a possible final state of black-hole evaporation: a stationary wormhole. The new framework allows a fully dynamical description of the operation of a wormhole for practical transport, including the back-reaction of the transported matter on the wormhole. As an example of a matter model, a Klein-Gordon field with negative gravitational coupling is a source for a static wormhole of Morris & Thorne.Comment: 5 revtex pages, 4 eps figures. Minor change which did not reach publisher

    Energy Density of Non-Minimally Coupled Scalar Field Cosmologies

    Get PDF
    Scalar fields coupled to gravity via ξRΦ2\xi R {\Phi}^2 in arbitrary Friedmann-Robertson-Walker backgrounds can be represented by an effective flat space field theory. We derive an expression for the scalar energy density where the effective scalar mass becomes an explicit function of ξ\xi and the scale factor. The scalar quartic self-coupling gets shifted and can vanish for a particular choice of ξ\xi. Gravitationally induced symmetry breaking and de-stabilization are possible in this theory.Comment: 18 pages in standard Late

    Dilatonic wormholes: construction, operation, maintenance and collapse to black holes

    Get PDF
    The CGHS two-dimensional dilaton gravity model is generalized to include a ghost Klein-Gordon field, i.e. with negative gravitational coupling. This exotic radiation supports the existence of static traversible wormhole solutions, analogous to Morris-Thorne wormholes. Since the field equations are explicitly integrable, concrete examples can be given of various dynamic wormhole processes, as follows. (i) Static wormholes are constructed by irradiating an initially static black hole with the ghost field. (ii) The operation of a wormhole to transport matter or radiation between the two universes is described, including the back-reaction on the wormhole, which is found to exhibit a type of neutral stability. (iii) It is shown how to maintain an operating wormhole in a static state, or return it to its original state, by turning up the ghost field. (iv) If the ghost field is turned off, either instantaneously or gradually, the wormhole collapses into a black hole.Comment: 9 pages, 7 figure

    Heat kernel regularization of the effective action for stochastic reaction-diffusion equations

    Full text link
    The presence of fluctuations and non-linear interactions can lead to scale dependence in the parameters appearing in stochastic differential equations. Stochastic dynamics can be formulated in terms of functional integrals. In this paper we apply the heat kernel method to study the short distance renormalizability of a stochastic (polynomial) reaction-diffusion equation with real additive noise. We calculate the one-loop {\emph{effective action}} and its ultraviolet scale dependent divergences. We show that for white noise a polynomial reaction-diffusion equation is one-loop {\emph{finite}} in d=0d=0 and d=1d=1, and is one-loop renormalizable in d=2d=2 and d=3d=3 space dimensions. We obtain the one-loop renormalization group equations and find they run with scale only in d=2d=2.Comment: 21 pages, uses ReV-TeX 3.

    Tolman wormholes violate the strong energy condition

    Get PDF
    For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define the bounce in terms of a three-dimensional edgeless achronal spacelike hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at and near the bounce and to derive general theorems regarding violations of the energy conditions--theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the highly symmetric FRW-based subclass of Tolman wormholes. [For example: even under the mildest of hypotheses, the strong energy condition (SEC) must be violated.] Alternatively, one can dispense with the minimal volume condition and define a generic bounce entirely in terms of the motion of test particles (future-pointing timelike geodesics), by looking at the expansion of their timelike geodesic congruences. One re-confirms that the SEC must be violated at or near the bounce. In contrast, it is easy to arrange for all the other standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.

    Gauge Field Back-reaction on a Black Hole

    Full text link
    The order â„Ź\hbar fluctuations of gauge fields in the vicinity of a blackhole can create a repulsive antigravity region extending out beyond the renormalized Schwarzschild horizon. If the strength of this repulsive force increases as higher orders in the back-reaction are included, the formation of a wormhole-like object could occur.Comment: 17 pages, three figures available on request, in RevTe

    Wormhole Cosmology and the Horizon Problem

    Full text link
    We construct an explicit class of dynamic lorentzian wormholes connecting Friedmann-Robertson-Walker (FRW) spacetimes. These wormholes can allow two-way transmission of signals between spatially separated regions of spacetime and could permit such regions to come into thermal contact. The cosmology of a network of early Universe wormholes is discussed.Comment: 13 pages, in RevTe
    • …
    corecore